Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and LAION have propelled recent dramatic progress in AI. Large neural models trained on such datasets produce impressive results and top many of today's benchmarks. A notable omission within this family of large-scale datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate the large potential of Objaverse via four diverse applications: training generative 3D models, improving tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models for Embodied AI, and creating a new benchmark for robustness analysis of vision models. Objaverse can open new directions for research and enable new applications across the field of AI.
translated by 谷歌翻译
Training embodied agents in simulation has become mainstream for the embodied AI community. However, these agents often struggle when deployed in the physical world due to their inability to generalize to real-world environments. In this paper, we present Phone2Proc, a method that uses a 10-minute phone scan and conditional procedural generation to create a distribution of training scenes that are semantically similar to the target environment. The generated scenes are conditioned on the wall layout and arrangement of large objects from the scan, while also sampling lighting, clutter, surface textures, and instances of smaller objects with randomized placement and materials. Leveraging just a simple RGB camera, training with Phone2Proc shows massive improvements from 34.7% to 70.7% success rate in sim-to-real ObjectNav performance across a test suite of over 200 trials in diverse real-world environments, including homes, offices, and RoboTHOR. Furthermore, Phone2Proc's diverse distribution of generated scenes makes agents remarkably robust to changes in the real world, such as human movement, object rearrangement, lighting changes, or clutter.
translated by 谷歌翻译
Training effective embodied AI agents often involves manual reward engineering, expert imitation, specialized components such as maps, or leveraging additional sensors for depth and localization. Another approach is to use neural architectures alongside self-supervised objectives which encourage better representation learning. In practice, there are few guarantees that these self-supervised objectives encode task-relevant information. We propose the Scene Graph Contrastive (SGC) loss, which uses scene graphs as general-purpose, training-only, supervisory signals. The SGC loss does away with explicit graph decoding and instead uses contrastive learning to align an agent's representation with a rich graphical encoding of its environment. The SGC loss is generally applicable, simple to implement, and encourages representations that encode objects' semantics, relationships, and history. Using the SGC loss, we attain significant gains on three embodied tasks: Object Navigation, Multi-Object Navigation, and Arm Point Navigation. Finally, we present studies and analyses which demonstrate the ability of our trained representation to encode semantic cues about the environment.
translated by 谷歌翻译
Remote sensing images are useful for a wide variety of environmental and earth monitoring tasks, including tracking deforestation, illegal fishing, urban expansion, and natural disasters. The earth is extremely diverse -- the amount of potential tasks in remote sensing images is massive, and the sizes of features range from several kilometers to just tens of centimeters. However, creating generalizable computer vision methods is a challenge in part due to the lack of a large-scale dataset that captures these diverse features for many tasks. In this paper, we present Satlas, a remote sensing dataset and benchmark that is large in both breadth, featuring all of the aforementioned applications and more, as well as scale, comprising 290M labels under 137 categories and seven label modalities. We evaluate eight baselines and a proposed method on Satlas, and find that there is substantial room for improvement in addressing research challenges specific to remote sensing, including processing image time series that consist of images from very different types of sensors, and taking advantage of long-range spatial context. We also find that pre-training on Satlas substantially improves performance on downstream tasks with few labeled examples, increasing average accuracy by 16% over ImageNet and 5% over the next best baseline.
translated by 谷歌翻译
Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether this makes it possible to learn those skills from text data and then use them to complete vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study a variety of strategies to mitigate this concern. We produce models using only text training data on three tasks: image captioning, visual entailment and visual question answering, and evaluate them on standard benchmarks using images. We find that this kind of transfer is possible and results in only a small drop in performance relative to models trained on images. We also showcase a variety of stylistic image captioning models that were trained using no image data and no human-curated language data, but instead text data from books, the web, or language models.
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
我们提出了Unified-io,该模型执行了跨越经典计算机视觉任务的各种AI任务,包括姿势估计,对象检测,深度估计和图像生成,视觉和语言任务,例如区域字幕和引用表达理解,并引用表达理解,进行自然语言处理任务,例如回答和释义。由于与每个任务有关的异质输入和输出,包括RGB图像,每个像素映射,二进制掩码,边界框和语言,开发一个统一模型引起了独特的挑战。我们通过将每个受支持的输入和输出均匀地均匀地统一到一系列离散的词汇令牌来实现这一统一。在所有任务中,这种共同的表示使我们能够在视觉和语言字段中的80多个不同数据集上培训单个基于变压器的体系结构。 Unified-io是第一个能够在砂砾基准上执行所有7个任务的模型,并在NYUV2-DEPTH,Imagenet,VQA2.0,OK-VQA,SWIG,SWIG,VIZWIZ,BOOLQ,BOOLQ和SCITAIL,带有NYUV2-DEPTH,Imagenet,VQA2.0,诸如NYUV2-DEPTH,ImageNet,vqa2.0等16个不同的基准中产生强大的结果。没有任务或基准特定的微调。 unified-io的演示可在https://unified-io.allenai.org上获得。
translated by 谷歌翻译
当今的最先进的视觉导航代理通常由大型深度学习模型端到端组成。这样的模型几乎没有关于学习的技能或对环境所采取的代理商的行为几乎没有解释性。尽管过去的作品探索了解释深度学习模型,但很少关注解释体现的AI系统,这通常涉及对环境结构,目标特征和行动的结果进行推理。在本文中,我们介绍了用于点目标和对象目标导航剂的具体代理(ISEE)的可解释性系统。我们使用ISEE来探测这些试剂产生的动态表示,以了解有关代理和环境的信息。我们在使用ISEE的情况下展示了有关导航剂的有趣见解,包括能够编码可到达位置的能力(避免障碍),目标的可见性,最初产卵位置的进展以及当我们掩盖关键关键时对代理行为的巨大影响个别神经元。该代码可在以下网址找到:https://github.com/allenai/isee
translated by 谷歌翻译
大量数据集和高容量模型推动了计算机视觉和自然语言理解方面的许多最新进步。这项工作提出了一个平台,可以在体现的AI中实现类似的成功案例。我们提出了Procthor,这是一个程序生成体现的AI环境的框架。 Procthor使我们能够采样多种,交互式,可自定义和性能的虚拟环境的任意大型数据集,以训练和评估在导航,互动和操纵任务中的体现代理。我们通过10,000个生成的房屋和简单的神经模型的样本来证明procthor的能力和潜力。仅在Procthor上仅使用RGB图像训练的模型,没有明确的映射,并且没有人类任务监督在6个体现的AI基准中产生最先进的结果,用于导航,重排和手臂操纵,包括目前正在运行的Habitat 2022,AI2-- Thor重新安排2022,以及机器人挑战。我们还通过对procthor进行预训练,在下游基准测试上没有进行微调,通常会击败以前的最先进的系统,从而访问下游训练数据。
translated by 谷歌翻译
通用视觉(GPV)系统是旨在解决各种视觉任务的模型,而无需进行架构更改。如今,GPV主要从大型完全监督的数据集中学习技能和概念。通过获取数据以迅速学习每个技能的每个概念,将GPV扩展到数万个概念都变得令人望而却步。这项工作提出了一种有效且廉价的替代方法:从监督数据集中学习技能,从Web图像搜索中学习概念,并利用GPV的关键特征:跨技能传递视觉知识的能力。我们使用跨越10K+视觉概念的1M+图像的数据集来演示3个基准上的两个现有GPV(GPV-1和VL-T5)的Webly Supumented概念扩展:5个基于可可的数据集(80个主要概念),这是一个新的策划系列,这是一个新的策划系列。基于OpenImages和VisualGenome存储库(〜500个概念)以及Web衍生的数据集(10K+概念)的5个数据集。我们还提出了一种新的体系结构GPV-2,该架构支持各种任务 - 从分类和本地化等视觉任务到Qu Viewer+语言任务,例如QA和字幕,再到更多的利基市场,例如人类对象互动检测。 GPV-2从Web数据中受益匪浅,并且在这些基准测试中胜过GPV-1和VL-T5。我们的数据,代码和Web演示可在https://prior.allenai.org/projects/gpv2上获得。
translated by 谷歌翻译